2024
Mean-field Chaos Diffusion Models
Sungwoo Park, Dongjun Kim, Ahmed Alaa
ICML 2024 (Oral) / Paper
Prediction-powered Generalization of Causal Inferences
Ilker Demirel, Ahmed Alaa, Anthony Philippakis, David Sontag
ICML 2024 / Paper
InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists
Yulu Gan, Sungwoo Park, Alexander Schubert, Anthony Philippakis, Ahmed Alaa
ICLR 2024 / Paper / Code / Hugging Face Demo / Tweetorial
2023
Conformal meta-learners for predictive inference of individual treatment effects
Ahmed Alaa, Zaid Ahmad, Mark van der Laan
NeurIPS 2023 (Oral) / Paper / Code / Tweetorial / Talk
Aligning synthetic medical images with clinical knowledge using human feedback
NeurIPS 2023 (Spotlight) / Paper / Code / Tweetorial
Diffinfinite: Large mask-image synthesis via parallel random patch diffusion in histopathology
Marco Aversa, Gabriel Nobis, Miriam Hägele, Kai Standvoss, Mihaela Chirica, Roderick Murray-Smith, Ahmed Alaa, Lukas Ruff, Daniela Ivanova, Wojciech Samek, Frederick Klauschen, Bruno Sanguinetti, Luis Oala
NeurIPS 2023 (Spotlight) / Paper / Code / Project Website
2022
ETAB: A Benchmark Suite for Visual Representation Learning in Echocardiography
Ahmed Alaa, Anthony Philippakis, David Sontag
NeurIPS 2022 / Paper / Code
How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models
Ahmed Alaa, Boris van Breugel, Evgeny Saveliev, Mihaela van der Schaar
ICML 2022 / Paper / Code
2021
Generative Time-series Modeling with Fourier Flows
Ahmed Alaa, Alex J. Chan, Mihaela van der Schaar
ICLR 2021 / Paper / Code
Conformal Time-series Forecasting
Kamile Stankeviciute, Ahmed Alaa, Mihaela van der Schaar
NeurIPS 2021 / Paper / Code
Learning queueing policies for organ transplantation allocation using interpretable counterfactual survival analysis
Jeroen Berrevoets, Ahmed Alaa, Zhaozhi Qian, James Jordon, Alexander ES Gimson, Mihaela Van Der Schaar
ICML 2021 / Paper / Code
2020
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions
Ahmed Alaa, Mihaela van der Schaar
ICML 2020 / Paper / Code
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions
Ahmed Alaa, Mihaela van der Schaar
ICML 2020 / Paper / Code
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J Chan, Ahmed Alaa, Zhaozhi Qian, Mihaela van der Schaar
ICML 2020 / Paper / Code
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
Zhaozhi Qian*, Ahmed Alaa*, Mihaela van der Schaar
NeurIPS 2020 / Paper
Estimating Counterfactual Treatment Outcomes over Time Through Adversarially Balanced Representations
Ioana Bica, Ahmed Alaa, James Jordon, Mihaela van der Schaar
ICLR 2020 / Paper / Code
Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders
Ioana Bica, Ahmed Alaa, Mihaela van der Schaar
ICML 2020 / Paper / Code
2019
Validating Causal Inference Models via Influence Functions
Ahmed Alaa, Mihaela van der Schaar
ICML 2019 / Paper
Attentive state-space modeling of disease progression
Ahmed Alaa, Mihaela van der Schaar
NeurIPS 2019 / Paper / Code
Demystifying Black-box Models with Symbolic Metamodels
Ahmed Alaa, Mihaela van der Schaar
NeurIPS 2019 / Paper / Code
2018
Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks
Bryan Lim, Ahmed Alaa, Mihaela van der Schaar
NeurIPS 2018/ Paper / Code
AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning
Ahmed Alaa, Mihaela van der Schaar
ICML 2018/ Paper / Code
Limits of estimating heterogeneous treatment effects: Guidelines for practical algorithm design
Ahmed Alaa, Mihaela van der Schaar
ICML 2018 / Paper
2017
Deep multi-task gaussian processes for survival analysis with competing risks
Ahmed Alaa, Mihaela van der Schaar
NeurIPS 2017 (Spotlight) / Paper / Code
Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes
Ahmed Alaa, Mihaela van der Schaar
NeurIPS 2017 / Paper / Code
Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis
Ahmed Alaa, Scott Hu, Mihaela van der Schaar
ICML 2017 / Paper
2016
Balancing Suspense and Surprise: Timely Decision Making with Endogenous Information Acquisition
Ahmed Alaa, Mihaela van der Schaar
NeurIPS 2016 / Paper
ForecastICU: A Prognostic Decision Support System for Timely Prediction of Intensive Care Unit Admission
Jinsung Yoon, Ahmed Alaa, Mihaela van der Schaar
ICML 2016 / Paper